Strict Self-assembly of Discrete Sierpinski Triangles
نویسندگان
چکیده
Winfree (1998) showed that discrete Sierpinski triangles can self-assemble in the Tile Assembly Model. A striking molecular realization of this self-assembly, using DNA tiles a few nanometers long and verifying the results by atomic-force microscopy, was achieved by Rothemund, Papadakis, and Winfree (2004). Precisely speaking, the above self-assemblies tile completely filled-in, two-dimensional regions of the plane, with labeled subsets of these tiles representing discrete Sierpinski triangles. This paper addresses the more challenging problem of the strict self-assembly of discrete Sierpinski triangles, i.e., the task of tiling a discrete Sierpinski triangle and nothing else. We first prove that the standard discrete Sierpinski triangle cannot strictly self-assemble in the Tile Assembly Model. We then define the fibered Sierpinski triangle, a discrete Sierpinski triangle with the same fractal dimension as the standard one but with thin fibers that can carry data, and show that the fibered Sierpinski triangle strictly self-assembles in the Tile Assembly Model. In contrast with the simple XOR algorithm of the earlier, non-strict self-assemblies, our strict self-assembly algorithm makes extensive, recursive use of optimal counters, coupled with measured delay and corner-turning operations. We verify our strict self-assembly using the local determinism method of Soloveichik and Winfree (2007).
منابع مشابه
Algorithmic Self-Assembly of DNA Sierpinski Triangles
Algorithms and information, fundamental to technological and biological organization, are also an essential aspect of many elementary physical phenomena, such as molecular self-assembly. Here we report the molecular realization, using two-dimensional self-assembly of DNA tiles, of a cellular automaton whose update rule computes the binary function XOR and thus fabricates a fractal pattern--a Si...
متن کاملSelf-assembly of the discrete Sierpinski carpet and related fractals (Preliminary version)
It is well known that the discrete Sierpinski triangle can be defined as the nonzero residues modulo 2 of Pascal’s triangle, and that from this definition one can easily construct a tileset with which the discrete Sierpinski triangle self-assembles in Winfree’s tile assembly model. In this paper we introduce an infinite class of discrete self-similar fractals that are defined by the residues mo...
متن کاملSelf-assembly of the Discrete Sierpinski Carpet and Related Fractals
It is well known that the discrete Sierpinski triangle can be defined as the nonzero residues modulo 2 of Pascal’s triangle, and that from this definition one can easily construct a tileset with which the discrete Sierpinski triangle self-assembles in Winfree’s tile assembly model. In this paper we introduce an infinite class of discrete self-similar fractals that are defined by the residues mo...
متن کاملSelf-Assembly of 4-Sided Fractals in the Two-Handed Tile Assembly Model
In this paper, we consider the strict self-assembly of fractals in one of the most well-studied models of tile based self-assembling systems known as the Two-handed Tile Assembly Model (2HAM). We are particularly interested in a class of fractals called discrete self-similar fractals (a class of fractals that includes the discrete Sierpinski’s carpet). We present a 2HAM system that strictly sel...
متن کاملA trace theorem for Dirichlet forms on fractals
We consider a trace theorem for self-similar Dirichlet forms on self-similar sets to self-similar subsets. In particular, we characterize the trace of the domains of Dirichlet forms on the Sierpinski gaskets and the Sierpinski carpets to their boundaries, where boundaries mean the triangles and rectangles which confine gaskets and carpets. As an application, we construct diffusion processes on ...
متن کامل